

Probabilistic Methods in Combinatorics

Instructor: Oliver Janzer

Hints for assignment 13

Problem 1. Use induction.

Problem 2. For every edge uv , define A_{uv} to be the event that at most one of u and v is in S .

Problem 3. First show that we may replace each \mathcal{F}_i with its up-closure \mathcal{H}_i in $2^{[n]}$, i.e.

$$\mathcal{H}_i = \{A \subseteq [n] : \exists B \in \mathcal{F}_i \text{ s.t. } B \subseteq A\}.$$

Problem 4. First show that for a given vertex v , the probability that v has degree at most $k - 1$ is $1/2$.